Simulation of charge reversal in salty environments: Giant overcharging?
نویسندگان
چکیده
منابع مشابه
Simulation of charge reversal in salty environments: giant overcharging?
We have performed MD simulations of a highly charged colloid in a solution of 3:1 and additional 1:1 salt. The dependency of the colloid's inverted charge on the concentration of the additional 1:1 salt has been studied. Most theories predict, that the inverted charge increases when the concentration of monovalent salt grows, up to what is called giant overcharging, while experiments and simula...
متن کاملStructural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase
Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...
متن کاملCharge reversal of colloidal particles
– A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay b...
متن کاملOvercharging of nanoparticles in electrolyte solutions.
Monte Carlo simulations are performed to investigate the effects of salt concentration, valence and size of small ions, surface charge density, and Bjerrum length on the overcharging of isolated spherical nanoparticles within the framework of a primitive model. It is found that charge inversion is most probable in solutions containing multivalent counterions at high salt concentrations. The max...
متن کاملCharge-reversal instability in mixed bilayer vesicles.
Bilayer vesicles form readily from mixtures of charged and neutral surfactants. When such a mixed vesicle binds an oppositely charged object, its membrane partially demixes: the adhesion zone recruits more charged surfactants from the rest of the membrane. Given an unlimited supply of adhering objects one might expect the vesicle to remain attractive until it was completely covered. Contrary to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal E
سال: 2008
ISSN: 1292-8941,1292-895X
DOI: 10.1140/epje/i2007-10260-x